Soup and a Side of General Relativity

As a chef, Nathan’s passion for creating new dishes is twofold—he creates dishes and the dishes they’re served on. When thinking about a new bowl to create for a 2014 dinner, he found inspiration from a source not often associated with food: the general theory of relativity. The vessel, which is designed to hold two vibrantly colored soups, has a unique shape. Until recently, the bowl might have appeared to be an intricate spiral, but now, the inspiration for its shape—gravitational waves generated by two colliding black holes—has been receiving international attention.

Modernist Cuisine Gravity Bowl

Last week, news broke that on September 14, 2015, the LIGO Scientific Collaboration, a network of scientists from 15 countries, detected gravitational waves for the first time ever. Naturally, the Modernist Cuisine team was excited by this monumental discovery. In honor of Nathan’s cosmic muse, it seemed like a fitting time to share the story of his “gravitational waves” bowl.

In 1915, Albert Einstein came up with the general theory of relativity—in short, it theorizes that gravity is due to the warping of space–time. It was a radical idea for the era, but in 1916 he proposed yet another radical idea with the prediction of gravitational waves, ripples in the curvature of space–time that propagate from their source at the speed of light. He expanded his theory by positing that gravity is made of waves, just as radio signals are made of waves of electromagnetic radiation.

Photo credit: R. Hurt/Caltech-JPL
Photo credit: R. Hurt/Caltech-JPL

About 1.3 billion years ago, a system of two black holes orbited each other and emitted gravitational waves along the way. They eventually coalesced into a supermassive, spinning black hole, and for decades scientists have looked for evidence of its gravitational waves, but to no avail. Amazingly, the LIGO team figured out a way to not only detect gravitational waves but to also prove it was two black holes that produced them—a momentous discovery that helps confirm Einstein’s theory.

Well before Nathan began working on Modernist Cuisine, he spent his days researching general relativity and quantum theories of gravitation. Although his career took him down another pathway, his interest in those subjects remained and would continue to influence his work in new ways. The book Gravitation, for example, influenced the design and approach of Modernist Cuisine. Coauthored by Kip Thorne, one of the founders of the LIGO project, it’s a landmark in the study of gravity.

It’s no wonder Nathan found inspiration in the cosmos yet again. When he thought about colliding black holes in the spring of 2014, he didn’t just see gravitational waves—he also saw an otherworldly bowl that would make two soups spiral around one another.

Modernist Cuisine Gravity Bowl Aluminum 3-D model

To design the bowl, Nathan used Wolfram’s Mathematica to create a mathematical model that mimicked the gravitational waves of orbiting black holes just before they merge. Next, the Modernist Cuisine team turned Nathan’s Mathematica surface into a 3-D model using the machine shop’s five-axis CNC mill to carve the prototype out of solid aluminum.

Modernist Cuisine Gravity Bowl Plaster Mold

From there, the aluminum 3-D model was used to make a negative mold out of plaster.

Modernist Cuisine Gravity Bowl Mold

Local Seattle potter Wally Bivins then made porcelain bowls from the plaster mold by using a technique called “hump molding.” The clay is rolled into a sheet and tamped down over the mold so that the top surface of the plaster mold becomes the soup-side of the bowl. The soft clay bowl is fired in a kiln and glazed, which transforms it into a bright white porcelain dish.

Modernist Cuisine Gravity Plate

Even before the announcement last week, we liked the story behind the gravitational wave bowl because it illustrated that the source of culinary creativity can come from anywhere—even outer space. Before, we were able to tell guests about a bowl inspired by Einstein’s theories. Now we look forward to telling Cooking Lab visitors that we serve soup from what will surely be one of the most important scientific discoveries of our time.

So, remember: if you’re ever at The Cooking Lab, those aren’t noodles in your soup—they’re ripples in the fabric of space–time.